

AD

AD-E400 872

# **CONTRACTOR REPORT ARLCD-CR-82036**

# NONPROPAGATION TEST PROGRAM FOR M55 STAB DETONATORS

U A118381

F. L. MCINTYRE
COMPUTER SCIENCES CORPORATION
HAZARD RANGE FACILITY
NSTL STATION. MS 39529

W. M. STIRRAT PROJECT ENGINEER ARRADCOM

**JULY 1982** 




US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

LARGE CALIBER

WEAPON SYSTEMS LABORATORY

DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



82 07 20 006

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no long r needed. Do not return to the originator.

\*Arthornastackinininational Construction de construction in the construction of the co

autings a scalitical interescention of Autiforences find Others, excession of planticavity that display to a

| REPORT DOCUMENTATION PAGE                                                                                                                            | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Contractor Report ARLCD-CR-82036 AD-A1183                                                                                                            | 3 RECIPIENT'S CATALOG NUMBER                                                                 |
| 4. TITLE (and Substite) NONPROPAGATION TEST PROGRAM FOR M55 STAB DETONATORS                                                                          | 3 TYPE OF PEPCRY & PERIOD COVERED Final Oct 1979 - Sep 1980 FPFORMING ORG REPORT NUMBER      |
| 7. AUTHOR(*) F. L. McIntyre, Compute <sup>-</sup> Sciences Corporation W. M. Stirrat, Project Engineer, ARRADCOM                                     | NA 13-50                                                                                     |
| 9. PEPFORMING ORGANIZATION NAME AND ADDRESS Computer Sciences Corporation Hazard Range Facility NSTL Station, MS 39529                               | 10 PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT MUMBERS MMT-5804288                        |
| : CONTROLLING OFFICE NAME AND ADDRESS<br>ARRADCOM, TSD<br>STINFO DIV (DRDAR-ISS)<br>Dover, NJ 07801                                                  | 12 REPORT DATE July 1982 13 NUMBER OF PAGES 36                                               |
| 14. MONITORING AGENCY NAME & ADDRESSII different from Commoting Office) ARRADCOM, LCWSL Energetic Systems Process Div (DRDAR-LCH-SP) Dover, NJ 07801 | IS. SECURITY CLASS, (of this report) Unclassified  IS. DECLASSIFICATION/DOWNGRADING SCHEDULE |

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

This program was accomplished as part of the J.S. Army's Manufacturing Methods and Technology program. The primary objective of this program is to develop, on a timely basis, manufacturing processes, techniques, and equipment for use in production of Army materiel.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Minimum nonpropagation distance

M55 Stab detonator

MMT - Ammunition

20. ABSTRACT (Continue on reverse side H responses and identify by block camber)

As part of an Army-wide expansion and modernization program, the safety of M55 detonators at various points within automated inspection equipment was studied using an MRC Corporation prototype. Test results will be used to establish safety criteria for new manufacturing LAP facilities. The program to determine the safety of the equipment was drafted by ARRADCOM and was subsequently divided into six separate phases: input/output transfer tests, intra-tray propagation tests, indexing dial spacing tests, rejected detonator container tests, indexing (cont)

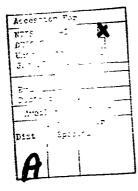
THE THE TOTAL PROPERTY OF THE PROPERTY OF THE

# SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

#### 20. ABSTRACT (cont)

dial nest integrity tests, and shipping tray integrity tests.

Results of these tests indicated that:


- l. A maximum of four detonators can ignite simultaneously without rupturing the outer field.
- 2. A minimum shield height of 50.8 mm is required for complete non-propagation between detonators within a single tray.
- 3. The existing machine spacing of 50.0  $\mbox{\sc mm}$  between detonators on the inspection dial is sufficient.
  - 4. The prototype container is safe for storage of 200 to 300 detonators.
- 5. There was no detonator reaction upon transfer to the dial nests at transfer rates of 13.7 m/sec.
- 6. A safe transfer is possible when using the MRC metering valve; the setting on the valve should not exceed the 2.0 setting.

UNCLASSIFIED

# CONTENTS

Page

| Introduction                                               | 1                |
|------------------------------------------------------------|------------------|
| Experimental Methods                                       | 1                |
| Material<br>Test Plan<br>Instrumentation                   | 2 3              |
| Results                                                    | 4                |
| Data Analysis<br>Test Results<br>Discussion<br>Conclusions | 4<br>4<br>5<br>7 |
| Distribution List                                          | 29               |





# TABLES

|    |                                                                                                                                           | Page |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|------|
| ı  | Input/output transfer tube results                                                                                                        | ģ    |
| 2  | Multiple detonator in input/output transfer tube test results                                                                             | 10   |
| 3  | Intra-tray propagation test results                                                                                                       | 11   |
| 4  | Phase 3, indexing dial spacing test results                                                                                               | 13   |
| 5  | Phase 4, test results for rejected detonator container                                                                                    | 14   |
| 6  | Indexing dial and nesting test results                                                                                                    | 15   |
| 7  | Shipping tray integrity test results                                                                                                      | 16   |
|    | FIGURES                                                                                                                                   |      |
| 1  | Test setup for input/output transfer tube tests                                                                                           | 19   |
| 2  | Intra-tray propagation test setup                                                                                                         | 20   |
| 3  | Indexing dial spacing test fixture                                                                                                        | 21   |
|    |                                                                                                                                           | 22   |
| 4  | Rejected detonator container                                                                                                              | 23   |
| 5  | Indexing dial nest integrity test setup                                                                                                   | 24   |
| 6  |                                                                                                                                           |      |
| 7  |                                                                                                                                           | 25   |
| 8  | Damage to Lexan® outer shield with 3 donor and 3 acceptor detonators functioning - Input/output transfer test                             | 26   |
| 9  | Damage to Lexan <sup>®</sup> outer shield with 4 donor and 4 acceptor detonators functioning - Input/output transfer test                 | 26   |
| 10 | Damage to Lexan <sup>®</sup> outer shield with 5 donor and 5 acceptor<br>detonators simultaneously initiated - Input/output transfer test | 27   |
| 11 | Damage to Lest area when 50 stab detonators simultaneously initiated during intra-tray propagation tests                                  | 27   |
| 12 | Shattered Lexan® shield when 50 stab detonators simultaneously initiated during the intra-tray propagation tests                          | 28   |
| 13 | Damage to aluminum pallet when 50 stab detonators simultaneously initiated during the intra-tray propagation tests                        | 28   |

The order of the properties of the second of the second second of the se

PHATTER PROPERTY OF A STATE OF THE PROPERTY OF A STATE OF THE PROPERTY OF THE

#### INTRODUCTION

At the present time, an Army-wide modernization program is underway to upgrade existing installations and to develop new explosive manufacturing and LAP (Load, Assembly, Pack) facilities. This effort will enable the US Army to achieve increased production cost-effectiveness with improved safety. As a part of this overall program, the Manufacturing Technology Division, Large Caliber Weapon Systems Laboratory, ARRADCOM, Dover, New Jersey, is engaged in the development of safety criteria as an activity entitled "Safety Engineering in Support of Ammunition Plants." These criteria will be used as part of the basis for the design of explosive production installations due for modernization, including Governmentowned, contractor-operated ammunition plants. The activities covered in this report provide safety data to specifically support modernization activities of the MRC Corporation in the development of the prototype Automated Inspection Equipment (ATE) for the M55 Stab Detonator.

The AIE for the M55 Stab Detonator requires a 100 percent inspection of finished stab detonators. It is configured into four identical inspection modules. The inspection equipment has a through-put requirement of 200 ppm, with each module operating at 50 ppm. The modules use an indexing dial with a nominal cycle time of one second (750 millisecond dwell). A preumatic parts transfer method is employed for the in-feed. Since this is a new design technique, experiments of this study were conducted to determine the safety of the pneumatic transfer system.

The objective of this study was to establish the effectiveness of the planned IRC automatic detonator inspection machine and supportive conveying systems to provide suppression of accidental detonator initiations.

#### EXPERIMENTAL METHODS

#### MATERIAL

aliang and a second of the second sec

M55 Stat Detonators were received from the Lone Star Army Ammunition Plant, Lot Number 15-507-125, manufactured 3-10-80. The detonators were received packaged 50 detonators per cardboard .n.s. 20 trays per carton, and five cartons per wooden bux.

MRC provided the dial indexing integrity test fixture and tube-to-dial interface adapter. A Deltron Fluid Products metering valve, model EFC 20, was later supplied by MRC for the indexing dial integrity test and the shipping tray integrity test.

# TEST PLAN

io de la company de la company

The test program was divided into six phases: phase 1, input/cutput transfer tube tests; phase 2, intra-tray propagation; phase 3, indexing dial spacing; phase 4, reject detonator container; phase 5, indexing dial nest integrity tests; and phase 6, shipping tray integrity tests. Each phase is described in detail.

## Phase :: Input/Output Transfer Tests

The objective of these tests was to determine the effectiveness of the lexano cover shield 38.1 mm 00 by 32.0 mm ID by 609.6 mm long (1.5 in.x 1.26 in.x 24 in) to contain an accidental detonator initiation within the transfer tube. A series of 50 tests were to be conducted where a single detonator was to be pneumatically propelled through an inner transfer tube [6.35 mm 00 by 4.138 mm ID (0.25 in. by 0.17 in) Poly-Flo #44P plastic tubing with 2758 kPa (400 psi) burst pressure] altgued with a second stationary detonator (acceptor) in a parallel transfer tube (figure 1). A total of 10 exploratory and 50 confirmatory tests were to be conducted. The observed results were to determine if the outer shield remained intact. A second series of tests were to be conducted employing multiple detonators in the transfer tube at the same time to determine the maximum quantity of detonators that could be initiated without rupturing the outer lexano shield. Once this upper unit of detonator initiations was determined, 10 confirmatory tests were to be conducted for statistical validity.

#### Phase 2: Intra-tray Propagation Tests

The objective of this test series was to determine potential detonations within locations of the loading and transfer trays of various designs and materials. Data were also to be provided as to the height of the Lexan® shield that is located above the transfer trays. A single aluminum pallet filled with 50 stab detonators was to have a detonator initiated from the bottom by a starter pin. A Lexan® shield 12.7 mm thick by 152.4 mm wide by 609.6 mm long (0.5 in. by 6 in. by 24 in) was to be positioned at an initial height of 19.05 mm (0.75 in) above the pallet (figure 2). If intra-propagation occurred, the height of the Lexan® shield was to be raised to a maximum height of 63.5 mm (2.5 in). If intra-propagation occurred at this height, the acceptor pallets, one on each side of the donor, would be tested for minimum safe separation distance between pallets. A total of 50 confirmatory tests were to be conducted in the intra-propagation configuration and 25 confirmatory tests in the inter-tray propagation configuration.

#### Phase 3: Indexing Dial Spacing

The objective of this test series was to determine if the proposed detonator separation of the inspection machine indexing dial was sufficient to prevent propagation of an explosive incident. The inspection machine rotates the detonators through the various inspection points on a circular indexing dial that receives and meets the detonators at the input station, and finally ejects the detonators at the output station. Within the machine, the detonators are equally spaced around the circumference of the indexing dial. MRC supplied a test fixture (figure 3) to simulate the equal spacing of the dial test fixture. An acceptor detonator was to be oriented in the same manner as the donor at a distance of 49.78 mm (1.96 in). A firing pin was to be used to initiate the donor. Acceptance criteria was to be the non-propagation of the acceptor. A total of 50 tests (10 exploratory and 40 confirmatory) were to be conducted in this configuration.

#### Phase 4: Rejected Detonator Container

During the normal operation of the inspection machine, any detonator that is rejected is transferred to a separate container within the inspection machine. Whenever the quantity of rejected detonators exceeds a predetermined number, a signal is sent requiring that the reject container be emptied. The objective of these tests was to determine the structural integrity of the proposed detonator reject container and the maximum quantity of detonators in the event of initiation. The initial test series was to be conducted on the test fixture (figure 4). Varying numbers of detonators (150 to 500) were to be placed inside the reject container in a styrofoam cup and initiated with a J2 blasting cap. Static pressure and temperature measurements were to be obtained.

# Phase 5: Indexing Dial Nest Integrity Tests

The inspection machine indexing dial nest receives the detonators from the transfer tube via pneumatic transfer. Maximum pressure in the event of regulator failure is 689 kPa (100 psi) and the normal transfer pressure is 345 kPa (50 psi). The transfer pressure is forced through a metering valve so that the transient time averages 325 milliseconds for a 1.22-meter (4-foot) distance. The test setup is shown in figure 5. A minimum of 50 tests (10 exploratory and 40 confirmatory) were to be conducted in this configuration.

# Phase 6: Shipping Tray Integrity Tests

The objective of these tests was to determine the potential for detonator function upon insertion into a cardboard pallet. Upon completion of the inspection procedure, the machine ejects the detonators from the indexing dial nest and transfers them pneumatically, with an average transient time of approximately 300 milliseconds at an operational pressure of 345 kPa (50 psi). Again, these tests were to be conducted at a maximum allowable pressure of 689 kPa (100 psi). Acceptance test criteria was to be non-functioning when the detonators were inserted pneumatically into the shipping trays. This test configuration is shown in figure 6. A minimum of 50 tests (10 exploratory and 40 confirmatory) were to be conducted at maximum pressure.

# INSTRUMENTATION

governo execcivilative extrono establica estab

Pressure measurements for the reject detonator container were to be obtained using two strain gauge pressure transducers. A DYNISCO Model PT 119G-50 [0-3447 kPa (0-50 psi)] and an AB Electronics Model 151-15C-194 [0-1724 kPa (0-250 psi)] were attached to the reject container through a common port. The transducers were to be pneumatically calibrated prior to the beginning of each test series to correspond to the maximum output of the transducer. A Chromel/Alumel thermocouple was to be installed in the fixture to measure the reaction temperature. Instrumentation setup is shown in figure 7.

#### RESULTS

# DATA ANALYSIS

Initally, exploratory tests were conducted in which a reversal type of reaction was obtained. That is, when the initial test setup of the seri\_s did not cause an acceptor item to function, then the item was subjected to a more severe donor reaction (i.e., closer distance) until the acceptor item was caused to function by the donor reaction. When this occurred, a distance at which there was no acceptor reaction was empirically determined. Once this distance was verified, a series of confirmatory tests were performed to provide statistical validity.

The probability of the occurrence of a propagation is dependent upon the degree of certainty or confidence level involved and has lower and upper limits. The lower limit for all confidence levels is zero, and the upper limit is a function of the number of observations of the acceptor items tested without a reaction. Each observation is independent of each of the other observations, having a constant probability of occurrence. The number of reactions  $(\chi)$  in a given number of observations  $(\eta)$  will have a binomial distribution. The estimated probability  $(\rho)$  of a reaction occurring is tepresented by the expression

$$\rho = \chi/\eta \qquad . \tag{1}$$

The expected value of  $\chi$  is given by:

$$E(\chi) = \eta \alpha \qquad . \tag{2}$$

Each confidence level will have a specific upper limit  $(\rho_2)$  depending upon the number of observations involved. The upper probability limit for a given confidence level ( $\alpha$ ) where a reaction is not observed is expressed as:

$$(1 - \rho_2)^{T_1} = E \quad , \tag{3}$$

where 
$$E = (1 - \alpha)/2$$
 and  $\alpha < 1.0$  . (4)

Fifty confirmatory tests should result in a 7.11 percent probability at a 95 percent confidence level.

# TEST RESULTS

Test results are shown in tables I through 7; figures 8 through 13 are selected photographs of test results. Exploratory tests are noted by an (E) prefix and the confirmatory tests are denoted by a (C) prefix. If the 10 exploratory tests did not react, they were counted as part of the total confirmatory tests.

#### DISCUSSION

Phase 1: Input/Output Transfer Tube Tests

Test results of a single detenator with a single acceptor are given in table 1. A total of 10 exploratory and 40 confirmatory tests were conducted. The outer shield did not rupture, but a slight bulge was noticeable after every three or four initiations. The donor detonator was pheumatically transported through a 609.6-mm (24-in) plastic tube striking a firing pin; an acceptor detonator was parallel. The donor inner plastic tube would rupture at the point of initiation. The acceptor detonator would function and the acceptor inner tube would also rupture. In 12 of the 50 tests, the acceptor detonator did not function. This was caused by blow-back pressure when the donor detonator was being transported. The outer shield was effective in preventing fragmentation when a single donor detonator and a single acceptor detonator were simultaneously ignited.

Table 2 shows results of the multiple detonator transport tests. "Then three donors and three acceptors were initiated, a small hole 6.35 mm (0.25 in.) in diameter was made in the outer shield. Figures 8, 9, and 10 show visible results of these tests. The diameter of the hole increased with each successive test when additional acceptor and donor deton ters were added. The exploratory tests using five donor and five acceptor detonators resulted in a 25.4 mm (1 in.) hole in the Lexano tube. Since the outer shield tubing was not defeated using two donor and two acceptor detonations, the confirmatory tests were conducted in this configuration. There was no rugture of the outer shield but there was noticeable builging.

# Phase 2: Intra-Tray Propagation Test

Table 3 depicts the results of these tests. The initial exploratory and confirmatory tests were conducted at a height of 19.05 mm (0.75 in). However, at test number C27, there was complete detonation of all 50 stab detonators. The Lexano shield was shattered and the test fixture was damaged. The damage is shown in figures 11, 12, and 13. Based upon the test results, the height of the shield was raised to 38.1 mm (1.5 in). Propagation of two detonators occurred on test number 11. Neither acceptor detonator was adjacent to the donor. The height of the shield was raised to 50.8 mm (2 in) and 50 confirmatory tests were conducted without incident. Because intra-propagation did not occur at this height [50.8 mm (2 in)], the multi-tray tests were not conducted.

નિક્ષાના કાર્યા કરે કાર્યા કરે કાર્યા કરે કાર્યા ક

#### Phase 3: Indexing Dial Spacing

und ommenmenhetemmeneemen maatekkeesen a meensemmen enertamessänkeemat sellääseniksikommeteisteksikommen enert Koosiitiitikäitemminnimmen maatekkeesen ja terimminnimmen mistänkeistija keestija ja koosiitematiiteja keesian

A total of 10 exploratory and 40 confirmatory tests were conducted. There was no propagation between donor and acceptor. However, the test fixture supplied by MRC had to be refurbished after six to ten tests due to the uamage by the donor reaction. On tests E4, C1, C2, and C6 the acceptor had evidence of flash burns from the donor reaction. The test results are shown in table 4.

# Phase 4: Pejected Detonator Container

Test results are given in table 5. The initial test series consisted of three tests, each with 200 star detonators in the reject container. The average pressure was 2523 kPa (366 psi) and the average temperature was 150°C. There was no failure of the pressure vessel. A test consisting of 300 stab detonators resulted in a

measured pressure value of 2889 kPa (419 psi) and a temperature measurement of 173°C. The 500 stab detonator test caused no failure of the pressure vessel, but there was violent eruption around the flange. The pressure measurement was 3378 kPa (490 psi) and the temperature was 196°C. A single test was conducted at the 400 detonator level and the vessel reaction was less violent. The maximum pressure was 2841 kPa (412 psi) and the maximum temperature was 177°C.

A note of caution should be taken in that the reject detonator container used for these tests was a completely closed vessel, whereas the actual vessel in the MRC inspection stations has an entry port where the rejected detonators must enter. The actual reject container, then, would went the expanding gases.

# Phase 5: Indexing Dial Nest Integrity Test

A total of seven exploratory tests were conducted varying the metering value setting from 5 to 1.5. This represents a transfer rate between i3.7 m/sec to 6 m/sec (85 ft/sec to 20 ft/sec) respectively. There were no reactions at any setting using 689 kPa (100 psi). A value setting of 1.5 with a transfer rate of 6 m/sec (20 ft/sec) was similar to the transfer rate used by MRC; therefore, the 50 confirmatory tests were conducted at this setting. Test results are given in table 6.

#### Phase 6: Shipping Tray Integrity Test

A total of 36 exploratory and 50 confirmatory tests were conducted and the results are given in table 7. Initially, the stab detonators reacted when transported at both 690 kPa and 345 kPa (100 psi and 50 psi). Testing was conducted on this test series until a metering valve was supplied by MRC. The tests were then repeated utilizing different settings. The final setting on the metering value was 2.0 as the stab detonators had reacted at settings from 5 to 3. Another difficulty noticed was that the donor would not always seat into the pallet correctly. Once a proper valve setting was established, 50 confirmatory tests were conducted without incident. However, the metering valve setting is critical.

#### CONCLUSIONS

The results of the input/output transfer tube tests determined that an outer shield constructed of lexan® tubing 38.1 mm (1.5 in) 00 by 32.0 mm (1.26 in) ID is effective when two donors and two acceptors in adjacent inner plastic tubes ignite simultaneously. Therefore, a maximum number of four detonators can ignite simultaneously without rupturing the outer shield.

Intra-tray propagation can occur when a single detonator is initiated. The minimum shield height to prevent intra-tray propagation is established as 50.8 mm (2 in) above the tray surface.

The MRC spacing of 50 mm between detonators on the inspection dial is sufficient to preclude propagation in the event of an accidental initiation.

The results of the rejected detonator container tests indicate that a maximum of 300 detonators is the upper limit to preclude serious damage to inspection machinery.

The results of the indexing dial test indicate that there is no detonator reaction upon transfer to the dial nest at transfer rates up to 13.7 m/sec. However, the metering valve setting is critical.

The results of the shipping tray integrity tests indicate that a safe transfer is possible when using the MRC metering valve, and the setting on the valve should not exceed the number 2.0 setting.

#### RECOMMENDATIONS

energy for the contraction of the construction of the contraction of t

Based upon the test results, it is recommended that the findings of this report should be considered in the design, acceptance, and operation of the MRC Automated Inspection Equipment for M55 Stab Detonators.

Table 1. Input/output transfer tube results

| Test       | Tempe | rature              | Humid1ty    | Pre        | Donor Acceptor Pressure reaction reaction |                     |               |                     | leld        |                                                  |                     |                                        |
|------------|-------|---------------------|-------------|------------|-------------------------------------------|---------------------|---------------|---------------------|-------------|--------------------------------------------------|---------------------|----------------------------------------|
| number     | °C    | (°F)                | 7           | kPa        | (psi)                                     | Yes                 | No            | Yes                 | No          | Yes                                              |                     | Remarks                                |
| El         | 21.1  | (70)                | 50          | 276        | (40)                                      | х                   |               | х                   |             |                                                  | X                   |                                        |
| E2         | 21.7  | (71)                | 49          | 276        | (40)                                      | Х                   |               | X                   |             |                                                  | X                   |                                        |
| E3         | 22.2  | (72)                | 49          | 276        | (40)                                      | Х                   |               | X                   |             |                                                  | X                   |                                        |
| E4         | 22.2  | (72)                | 48          | 276        | (40)                                      | Х                   |               |                     | X           |                                                  | X                   |                                        |
| E5         | 22.2  | (72)                | 48          | 276        | (40)                                      | X                   |               | X                   |             |                                                  | X                   |                                        |
| E6         | 20.0  | (68)                | 53          | 276        | (40)                                      | Х                   |               |                     | X           |                                                  | X                   |                                        |
| E7         | 20.6  | (69)                | 52          | 276        | (40)                                      | X                   |               | Х                   |             |                                                  | X                   |                                        |
| E8         | 22.8  | (73)                | 50          | 345        | (50)                                      | Х                   |               | X                   |             |                                                  | X                   |                                        |
| E9         | 23.9  | (75)                | 49          | 345        | (50)                                      | Х                   |               |                     | X           |                                                  | X                   |                                        |
| E10        | 25.0  | (77)                | 42          | 345        | (50)                                      | Х                   |               | Х                   |             |                                                  | X                   |                                        |
| Cl         | 25.6  | (78)                | 42          | 345        | (50)                                      | Х                   |               |                     | Х           |                                                  | X                   |                                        |
| C2         | 25.6  | (78)                | 42          | 345        | (50)                                      | Х                   |               | Х                   |             |                                                  | Х                   |                                        |
| C3         | 22.2  | (72)                | 46          | 345        | (50)                                      | Х                   |               | Х                   |             |                                                  | X                   |                                        |
| C4         | 22.2  | (72)                | 46          | 345        | (50)                                      | X                   |               | Х                   |             |                                                  | Х                   |                                        |
| C5         | 22.2  | (72)                | 46          | 345        | (50)                                      | X                   |               | Х                   |             |                                                  | X                   |                                        |
| C6         | 22.2  | (72)                | 46          | 345        | (50)                                      | X                   |               | X                   |             |                                                  | X                   | <u> </u>                               |
| C7         | 22.2  | (72)                | 46          | 345        | (50)                                      | Х                   |               | Х                   |             |                                                  | X                   |                                        |
| C8         | 22.2  | (72)                | 46          | 345        | (50)                                      | Х                   |               |                     | X           |                                                  | X                   |                                        |
| C9         | 13.9  | (57)                | 50          | 345        | (50)                                      | X                   |               | Х                   |             |                                                  | X                   |                                        |
| C10        | 13.9  | (57)                | 50          | 345        | (50)                                      | X                   |               | X                   |             |                                                  | X                   |                                        |
| Cll        | 13.9  | (57)                | 50          | 345        | (50)                                      | X                   |               | X                   |             |                                                  | X ·                 |                                        |
| C12        | 15.9  | (57)                | 50          | 345        | (50)                                      | Х                   |               |                     | X           |                                                  | X                   |                                        |
| C13        | 13.9  | (57)                | 50          | 345        | (50)                                      | Х                   |               | X                   |             |                                                  | X                   |                                        |
| C14        | 19.4  | (67)                | 45          | 345        | (50)                                      | Х                   |               |                     | X           |                                                  | Х                   |                                        |
| C15        | 19.4  | (67)                | 45          | 345        | (50)                                      | X                   |               | X                   |             |                                                  | X                   |                                        |
| C16        | 19.4  | (67)                | 45          | 345        | (50)                                      | Х                   |               | Х                   |             |                                                  | X                   |                                        |
| C17        | 19.4  | (67)                | 45          | 345        | (50)                                      | X                   |               | X                   |             |                                                  | X                   |                                        |
| C18        | 19.4  | (67)                | 45          | 345        | (50)                                      | Х                   |               | X                   |             |                                                  | Х                   |                                        |
| C19        | 19.4  | (67)                | 45          | 345        | (50)                                      | X                   |               | X                   |             |                                                  | X                   |                                        |
| C20        | 19.4  | (67)                | 45          | 345        | (50)                                      | X                   |               |                     | X           |                                                  | Χ                   |                                        |
| C21        | 22.2  | (72)                | 42          | 345        | (50)                                      | Х                   |               |                     | X           |                                                  | X                   |                                        |
| C22        | 22.2  | (72)                | 42          | 345        | (50)                                      | Х                   |               | Х                   |             |                                                  | X                   |                                        |
| C23        | 22.2  | (72)                | 42          | 345        | (50)                                      | Х                   |               | Х                   |             |                                                  | X                   |                                        |
| C24        | 22.2  | (72)                | 42          | 345        | (50)                                      | Х                   |               |                     | Х           | -                                                | X                   |                                        |
| C25        | 22.2  | (72)                | 42          | 345        | (50)                                      | Х                   |               | X                   |             |                                                  | X                   |                                        |
| C26        | 22.2  | (72)                | 54          | 34.5       | (50)                                      | X                   |               | Х                   |             | <del>                                     </del> | X                   | <u> </u>                               |
| C27        | 22.2  | (72)                | 54<br>54    | 345<br>345 | (50)<br>(50)                              | X                   |               | X                   |             | <b>  </b>                                        | X                   |                                        |
| C28<br>C29 | 22.2  | (72)<br>(72)        | <u>54</u>   | 345        | (50)                                      | $\frac{x}{x}$       |               | - <del>x</del>      |             |                                                  | · <del>X</del>      | <u> </u>                               |
| C30        | 22.2  | $\frac{(72)}{(72)}$ | <del></del> | 345        | (50)                                      | - X                 |               | - <del>x</del>      |             |                                                  | <del>^</del>        |                                        |
| C31        | 18.3  | (65)                | 46          | 345        | (50)                                      | $\frac{\lambda}{x}$ |               |                     | ×           |                                                  | Ŷ                   |                                        |
| C32        | 18.3  | (65)                | 46          | 345        | (50)                                      | <del>- x  </del>    | <del></del> ∤ | $-\frac{1}{x}$      |             |                                                  | <del>^</del>        |                                        |
| C32        | 18.3  | (65)                | 46          | 345        | (50)                                      | $\frac{x}{x}$       |               | $\frac{\hat{x}}{x}$ | <del></del> |                                                  | <del>x</del>        |                                        |
| C34        | 18.3  | (65)                | 46          | 345        | (50)                                      | X X                 |               | $\frac{\hat{x}}{x}$ |             |                                                  | <del>x</del>        |                                        |
| C35        | 18.3  | (65)                | 46          | 345        | (50)                                      | $-\hat{\mathbf{x}}$ | <del></del> - | <del></del>         | x           |                                                  | <del>x</del>        |                                        |
| C36        | 18.3  | (65)                | 46          | 345        | (50)                                      | $\frac{\hat{x}}{x}$ |               | x                   |             |                                                  | <del>x</del>        | · · · · · · · · · · · · · · · · · · ·  |
| C37        | 18.3  | (65)                | 46          | 345        | (50)                                      | $\frac{\hat{x}}{x}$ |               | <del>x</del> +      |             |                                                  | $\hat{\mathbf{x}}$  |                                        |
| C38        | 18.3  | (65)                | 46          | 345        | (50)                                      | X                   |               | $\frac{\hat{x}}{x}$ |             |                                                  | x                   | <del></del>                            |
| C39        | 18.3  | (65)                | 46          | 345        | (50)                                      | $\frac{x}{x}$       |               | $\frac{x}{x}$       |             |                                                  | $\frac{\hat{x}}{x}$ | ······································ |
| C40        | 18.3  | (65)                | 46          | 345        | (50)                                      | x                   |               | x                   |             |                                                  | X                   |                                        |

Table 2. Multiple detonator in input/output transfer tube test results

| Test   | Mumber<br>of<br>donor/ |      | rature | Manuality |     | sure  | Don<br>reac | tisa       | sccer<br>react | ion |              | ield<br>ture |                                           |
|--------|------------------------|------|--------|-----------|-----|-------|-------------|------------|----------------|-----|--------------|--------------|-------------------------------------------|
| number | acceptor               | °C   | (*F)   | _ z       | kPa | (psi) | Yes         | <b>%</b> o | Tes            | Xo. | Yes          | *            | icz:ta                                    |
| Εl     | 2/2                    | 18.3 | (65)   | 45        | 345 | (50)  | x           |            | Å              |     |              | I            | Bulge in<br>cuter shield                  |
| E2     | 3/3                    | 23.3 | (74)   | 42        | 345 | (50)  | X           |            | x              |     | x            |              | 0.25" dismeter<br>hole in outer<br>shield |
| E3     | 4/4                    | 23.3 | (74)   | 42        | 345 | (3/)  | ¥           |            | ¥              |     | ۲            |              | 0.5" disseter<br>hole in outer<br>shield  |
| έS     | 5/5                    | 23.3 | (74)   | 42        | 345 | (50)  | x           |            | X              |     | X            |              | i" dimeter<br>hole in outer<br>shield     |
| c:     | 2/2                    | 18.3 | (65)   | 45        | 345 | (50)  | 7           |            | X              |     | T            | 7            | Bulge in<br>outer shield                  |
| C2     | 2/2                    | 18.3 | (65)   | 45        | 345 | (50)  | ×           |            | X              |     |              | X            | Belge in<br>outer shield                  |
| C3     | 2/2                    | 18.3 | (65)   | 45        | 345 | (9)   | Y           | į          | ×              | Γ-  | <del>-</del> | X            | Bulge in<br>outer shield                  |
| u      | 2/2                    | 23.3 | (74)   | 42        | 345 | (50)  | X           |            | ×              | 1   |              | X            | Bulge in<br>owter shield                  |
| C5     | 2/2                    | 23.3 | (74)   | 42        | 243 | (50)  | X           |            | ×              |     |              | X            | Bulge to<br>outer shield                  |
| C6     | 2/2                    | 23.3 | (74)   | 42        | 345 | (50)  | x           |            | 1              |     |              | X            | Sulge in                                  |
| C7     | 2/2                    | 23.3 | (74)   | 1 42      | 345 | (6)   | X           | Ī —        | x              | Ī   | ī            | x            | Sulge in<br>outer shield                  |
| CE     | 2/2                    | 23.3 | (74)   | 12        | 345 | (50)  | X           | Ī          | ×              |     | Т            | ×            | Bulge in<br>octer shield                  |
| C9     | 172                    | 23.3 | (74)   | 1 32      | 345 | (30)  | X           |            | 1              |     | T            | x            | Bulge in<br>outer shield                  |
| C!0    | 2/2                    | 23.3 | (74)   | 50        | 345 | (SC)  | - <i>ا</i>  |            | I              |     |              | ₹            | Sulge in<br>outer shield                  |

Table 3. Intra-tray propagation test results

| Test     | Temper | rature              | Humidity | Donor<br>index | lle   | ight                  | Don                 | or            | Int           | ra-<br>gation                               |                                                          |
|----------|--------|---------------------|----------|----------------|-------|-----------------------|---------------------|---------------|---------------|---------------------------------------------|----------------------------------------------------------|
| number   | °C     | (°F)                | Z.       | number         | nan   | (in)                  | Yes                 | No            | Yes           | No                                          | Remarks                                                  |
| El       | 26.1   | (79)                | 49       | 24             | 19.05 | (0.75)                | х                   |               |               | X                                           |                                                          |
| E2       | 26.7   | (80)                | 49       | 24             | 19.05 | (0.75)                | X                   |               | <del></del>   | X                                           |                                                          |
| E3       | 26.7   | (80)                | 49       | 23             | 19.05 | (0.75)                | Х                   |               |               | X                                           |                                                          |
| E4       | 26.7   | (80)                | 48       | 22             | 19.05 | (0.75)                | X                   |               |               | Х                                           |                                                          |
| E5       | 20.0   | (68)                | 34       | 22             | 19.05 | (0.75)                | Х                   |               |               | X                                           |                                                          |
| E6       | 20.0   | (68)                | 34       | 23             | 19.05 | (0.75)                | X                   |               |               | X                                           |                                                          |
| E7       | 20.0   | (68)                | 34       | 28             | 19.05 | (0.75)                | X                   |               |               | X                                           |                                                          |
| Eδ       | 20.0   | (68)                | 34       | 23             | 19.05 | (0.75)                | X                   |               |               | X                                           |                                                          |
| E9       | 20.0   | (68)                | 34       | 28             | 19.05 | (0.75)                | Х                   |               |               | Х                                           |                                                          |
| E10      | 20.0   | (68)                | 34       | 23             | 19.05 | (0.75)                | Х                   |               |               | Х                                           |                                                          |
| C1       | 20.0   | (68)                | 34       | 23             | 19.05 | (0.75)                | X                   |               | L             | X                                           |                                                          |
| C2       | 21.1   | (70)                | 34       | 18             | 19.05 | (0.75)                | X                   |               | <b>├</b> ───┤ | X                                           |                                                          |
| C3       | 21.1   | (70)                | 47       | 19             | 19.05 | (0.75)                | X                   |               | <b></b>       | X                                           |                                                          |
| C4       | 22.2   | (72)                | 35       | 23             | 19.05 | (0.75)                | X                   |               | <b> </b>      | X                                           |                                                          |
| C5       | 22.2   | (72)                | 35       | 24             | 19.05 | (0.75)                | X                   |               | <b> </b>      | X                                           | <del></del>                                              |
| C6       | 22.2   | (72)                | 35       | 27             | 19.05 |                       |                     |               | <del>-</del>  | - X                                         | <del></del>                                              |
| C7       | 22.2   | (72)                | 35       | 29<br>30       | 19.05 | (0.75)                | X                   |               |               | - <u>^</u>                                  |                                                          |
| C8       | 22.2   | (72)                | 35<br>35 | 32             | 19.05 | (0.75)                | X                   |               |               | $\frac{\hat{x}}{x}$                         |                                                          |
| C10      | 22.2   | (72)<br>(72)        | 35       | 33             | 19.05 | (0.75)                | ×                   |               |               | $\frac{\hat{x}}{x}$                         | <del></del>                                              |
| Cli      | 22.2   | (72)                | 35       | 34             | 19.05 | (0.75)                | $-\hat{\mathbf{x}}$ |               |               | $\frac{\hat{x}}{\hat{x}}$                   |                                                          |
| C12      | 22.2   | (72)                | 35       | 12             | 19.05 | (0.75)                | - <del>,</del> x    |               |               | $\frac{\hat{x}}{x}$                         |                                                          |
| C13      | 22.2   | (72)                | 35       | 13             | 19.05 | (0.75)                | X                   |               |               | <del>- x</del>                              |                                                          |
| C14      | 22.2   | (72)                | 35       | 14             | 19.05 | (0.75)                | X                   |               |               | X                                           | <del></del>                                              |
| C15      | 22.2   | (72)                | 35       | 29             | 19.05 | (0.75)                | X                   |               |               | X                                           |                                                          |
| C16      | 22.2   | (72)                | 35       | 28             | 19.05 | (0.75)                | X                   |               |               | X                                           |                                                          |
| C17      | 22.2   | (72)                | 35       | 27             | 19.05 | (0.75)                | Х                   |               |               | X                                           | ·                                                        |
| C18      | 22.2   | (72)                | 35       | 24             | 19.05 | (0.75)                | X                   |               |               | X                                           |                                                          |
| C19      | 22.2   | (72)                | 35       | 23             | 19.05 | (0.75)                | Х                   |               |               | Х                                           |                                                          |
| C20      | 22.2   | (72)                | 35       | 22             | 19.05 | (0.75)                | Х                   |               |               | X                                           |                                                          |
| C21      | 22.2   | (72)                | 35       | 32             | 19.05 | (0.75)                | Х                   |               |               | Х                                           |                                                          |
| C22      | 22.2   | (72)                | 35       | 33             | 19.05 | (0.75)                | Х                   |               |               | Х                                           |                                                          |
| C23      | 20.6   | (69)                | 70       | 29             | 19.05 | (0.75)                | Х                   |               | х             |                                             | Complete tray detona-<br>ted: Lexan® shield<br>destroyed |
| Dl       | 22.2   | (72)                | 68       | 23             | 38.1  | (1.5)                 | X                   |               |               | X                                           | - <u> </u>                                               |
| D2       | 22.2   | (72)                | 68       | 28             | 38.1  | (1.5)                 | _ <u>x</u>          |               |               | X                                           | <del></del>                                              |
| D3<br>D4 | 22.2   | (72)<br>(72)        | 68<br>85 | 23<br>19       | 38.1  | (1.5)                 | X                   |               | <del></del>   | X                                           |                                                          |
| D5       | 22.2   | $\frac{(72)}{(72)}$ | 85       | 22             | 38.1  | (1.5)                 | $\frac{x}{x}$       |               | <del></del>   | $\frac{x}{x}$                               |                                                          |
| D6       | 22.2   | $\frac{(72)}{(72)}$ | 85       | 28             | 38.1  | $\frac{(1.5)}{(1.5)}$ | $\frac{\Lambda}{X}$ | <del></del> + |               | $\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}}$ |                                                          |
| D7       | 22.2   | $\frac{72}{72}$     | 85       | 19             | 38.1  | (1.5)                 | $\frac{\hat{x}}{x}$ |               |               | x                                           | <del></del>                                              |
| D8       | 22.2   | (72)                | 85       | 17             | 38.1  | (1.5)                 | $\hat{\mathbf{x}}$  |               |               | x                                           | · · · · · · · · · · · · · · · · · · ·                    |
| D9       | 22.2   | (72)                | 85       | 12             | 38.1  | (1.5)                 | $\frac{\hat{x}}{x}$ |               |               | x                                           | <del>,</del>                                             |
| D10      | 22.2   | (72)                | 85       | 13             | 38.1  | (1.5)                 | X                   | <del></del>   | <del></del>   | $\frac{\hat{x}}{x}$                         |                                                          |
| D11      | 25.6   | (78)                | 74       | 14             | 38.1  | (1.5)                 | x                   |               | х             |                                             | #16 and 35 acceptor detonators reacted                   |
| Al       | 26.7   | (80)                | 80       | 29             | 50.8  | (2.0)                 | Х                   |               |               | X                                           |                                                          |
| A2       | 26.7   | (80)                | 80       | 24             | 50.8  | (2.0)                 | Х                   |               |               | X                                           |                                                          |
| A3       | 27.8   | (82)                | 80       | 19             | 50.8  | (2.0)                 | х                   |               |               | Х                                           |                                                          |
| A4       | 27.8   | (82)                | 79       | 29             | 50.8  | (2.0)                 | Х                   |               |               | х                                           |                                                          |

Table 3. Intra-tray propagation test results (cont)

| Test       | Tempe        | rature | Humidity | Donor<br>index | He   | ight  | Don                                         |             | Inti                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|--------------|--------|----------|----------------|------|-------|---------------------------------------------|-------------|--------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| number     | °C           | (°F)   | %        | number         | mm   | (in)  | Yes                                         | No          | Yes                                              | No                                     | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A5         | 27.8         | (82)   | 79       | 22             | 50.8 | (2,0) | х                                           |             |                                                  | Х                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A6         | 27.8         | (82)   | 79       | 24             | 50.8 | (2.0) | x                                           |             |                                                  | X                                      | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A7         | 27.8         | (82)   | 79       | 22             | 50.8 | (2.0) | X                                           |             | <del> </del>                                     | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A8         | 27.8         | (82)   | 79       | 17             | 50.8 | (2.0) | X                                           |             | 1                                                | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A9         | 31.1         | (88)   | 65       | 28             | 50.8 | (2.0) | X                                           | <del></del> | +                                                | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A10        | 31.1         | (88)   | 65       | 27             | 50.8 | (2.0) | X                                           |             | +                                                | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All        | 31.1         | (88)   | 65       | 29             | 50.8 | (2.0) | X                                           | :           |                                                  | X                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A12        | 31.1         | (88)   | 65       | 17             | 50.8 | (2.0) | X                                           |             |                                                  | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A13        | 31.1         | (88)   | 65       | 19             | 50.8 | (2.0) | X                                           |             | 1                                                | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A14        | 31.1         | (88)   | 65       | 13             | 50.8 | (2.0) | X                                           |             | <del> </del>                                     | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A15        | 31.1         | (88)   | 60       | 14             | 50.8 | (2.0) | X                                           |             | 1                                                | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A16        | 31.1         | (88)   | 60       | 12             | 50.8 | (2.0) | X                                           |             |                                                  | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A17        | 31.1         | (88)   | 60       | 17             | 50.8 | (2.0) | Х                                           |             |                                                  | Х                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A18        | 31.1         | (88)   | 60       | 33             | 50.8 | (2.0) | X                                           |             | 1                                                | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A19        | 29.4         | (85)   | 60       | 32             | 50.8 | (2.0) | Х                                           |             |                                                  | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A20        | 29.4         | (85)   | 60       | 34             | 50.8 | (2.0) | Х                                           |             |                                                  | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A21        | 27.8         | (82)   | 56       | 37             | 50.8 | (2.0) | Х                                           |             |                                                  | Х                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A22        | 26.7         | (80)   | 55       | 39             | 50.8 | (2.0) | X                                           |             |                                                  | Х                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A23        | 26.7         | (80)   | 55       | 32             | 50.8 | (2.0) | Х                                           |             |                                                  | Х                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A24        | 26.7         | (80)   | 55       | 33             | 50.8 | (2.0) | X                                           |             |                                                  | Х                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A25        | 26.7         | (80)   | 55       | 32             | 50.8 | (2.0) | Х                                           |             |                                                  | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A26        | 23.9         | (75)   | 65       | 34             | 50.8 | (2.0) | Х                                           |             |                                                  | У.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A27        | 23.9         | (75)   | 65       | 33             | 50.8 | (2.0) | Х                                           |             |                                                  | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A28        | 23.9         | (75)   | 65       | 32             | 50.8 | (2.0) | X                                           |             |                                                  | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A29        | 23.9         | (75)   | 65       | 29             | 50.8 | (2.0) | Х                                           |             |                                                  | Х                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A30        | 23.9         | (75)   | 65       | 27             | 50.8 | (2.0) | Х                                           |             |                                                  | Х                                      | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A31        | 23.9         | (75)   | 65       | 24             | 50.8 | (2.0) | X                                           |             | ļ                                                | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A32        | 23.9         | (75)   | 65       | 38             | 50.8 | (2.0) | Х                                           |             |                                                  | Х                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A33        | 23.9         | (75)   | 65       | 34             | 50.8 | (2.0) | Х                                           |             |                                                  | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A34        | 23.9         | (75)   | 65       | 38             | 50.8 | (2.0) | Х                                           |             | ļ                                                | <u> </u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A35        | 26.7         | (80)   | 55       | 18             | 50.8 | (2.0) | X                                           |             | <del> </del>                                     | Х                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A36        | 26.7         | (80)   | 55       | 23             | 50.8 | (2.0) | X                                           |             |                                                  | Х                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A37        | 26.7         | (80)   | 55       | 28             | 50.8 | (2.0) | X                                           |             | <del> </del>                                     | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A38<br>A39 | 26.7         | (80)   | 55       | 32             | 50.8 | (2.0) | X                                           |             | <del>   </del>                                   | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A40        | 26.7<br>26.7 | (80)   | 55<br>55 | <u>32</u>      | 50.8 | (2.0) | $\frac{x}{x}$                               |             | <del>                                     </del> | X                                      | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A40<br>A41 | 26.7         | (80)   | 55       | 27             | 50.8 | (2.0) | $\frac{x}{x}$                               | <del></del> | <del>  </del>                                    | <del>-</del> Ŷ-                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A41<br>A42 | 26.7         | (80)   | 55       | 18             | 50.8 | (2.0) | X                                           |             | <del>  </del>                                    | x                                      | No. 1 The State of |
| A42<br>A43 | 26.7         | (80)   | 55       | 17             | 50.8 | (2.0) | $\frac{\lambda}{x}$                         |             | <del>                                     </del> | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A44        | 26.7         | (80)   | 55       | 19             | 50.8 | (2.0) | $\frac{\lambda}{x}$                         |             |                                                  | $\frac{\hat{\mathbf{x}}}{\mathbf{x}}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A44<br>A45 | 26.7         | (80)   | 55       | 28             | 50.8 | (2.0) | X                                           |             | <del>                                     </del> | X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A46        | 26.7         | (80)   | 55       | 17             | 50.8 | (2.0) | $\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}}$ | 1           | <del>                                     </del> | $\hat{\mathbf{x}}$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A47        | 26.7         | (80)   | 55       | 28             | 50.8 | (2.0) | <del>- 2  </del>                            |             | <del> </del>                                     | $\frac{-\hat{\mathbf{x}}}{\mathbf{x}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A48        | 26.7         | (80)   | 55       | 24             | 50.8 | (2.0) | $\hat{\mathbf{x}}$                          | ***         | <del>  </del>                                    | $\frac{\hat{\mathbf{x}}}{\mathbf{x}}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A49        | 26.7         | (80)   | 55       | 34             | 50.8 | (2.0) | $\frac{\hat{x}}{\hat{x}}$                   |             |                                                  | $\frac{\hat{\mathbf{x}}}{\mathbf{x}}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A50        | 26.7         | (80)   | 55       | 38             | 50.8 | (2.0) | <del>-</del> â                              |             |                                                  | x                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V)^        | 4017         | (00)   |          | JU             | 20.0 | (2.0) |                                             |             | السسا                                            | ^                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 4. Phase 3, indexing dial spacing test results

| Test   | Tempe | Temperature Humidity reaction reaction |    | •   |           |                                                  |                      |                                     |
|--------|-------|----------------------------------------|----|-----|-----------|--------------------------------------------------|----------------------|-------------------------------------|
| number | °C    | (°F)                                   | z  | Yes |           | Yes                                              | No                   | Remarks                             |
| El     | 25.0  | (77)                                   | 42 | х   |           |                                                  | х                    | Acceptor round shifted in position  |
| E2     | 25.0  | (77)                                   | 43 | X   |           | -                                                | X                    | Acceptor round blown from fixture   |
| E3     | 25.6  | (78)                                   | 47 | X   |           |                                                  | X                    |                                     |
| E4     | 25.6  | (78)                                   | 44 | X   |           | <del>                                     </del> | $\frac{\ddot{x}}{x}$ | Acceptor has flash mark from donor  |
| E5     | 25.6  | (78)                                   | 44 | X   |           | <del>                                     </del> | <del></del>          | 7.000702 1140 124011 2241 201102    |
| £6     | 20.6  | (69)                                   | 53 | X   |           | <del>                                     </del> | X                    |                                     |
| E7     | 21.1  | (70)                                   | 51 | X   |           |                                                  | X                    |                                     |
| E8     | 21.7  | (71)                                   | 52 | X   |           |                                                  | X                    |                                     |
| E9     | 20.0  | (68)                                   | 70 | X   |           |                                                  | X                    | Refurbish fixture new firing pin    |
| E10    | 20.0  | (68)                                   | 70 | X   |           |                                                  | X                    |                                     |
| C1     | 20.0  | (68)                                   | 70 | X   |           |                                                  | X                    | Acceptor has flash burns from donor |
| C2     | 20.0  | (68)                                   | 70 | X   |           |                                                  | X                    | Acceptor has flash burns            |
| C3     | 20.0  | (68)                                   | 70 | X   |           |                                                  | Х                    |                                     |
| C4     | 20.0  | (68)                                   | 70 | X   |           |                                                  | X                    |                                     |
| C5     | 20.0  | (68)                                   | 70 | X   |           |                                                  | Х                    | Refurbish test fixture              |
| C6     | 20.0  | (68)                                   | 70 | X   |           |                                                  | X                    | Acceptor has flash burns            |
| C7     | 20.0  | (68)                                   | 70 | Х   |           |                                                  | Х                    |                                     |
| C8     | 20.0  | (68)                                   | 70 | Х   |           |                                                  | Х                    |                                     |
| C9     | 20.0  | (68)                                   | 70 | X   |           |                                                  | X                    |                                     |
| C10    | 20.0  | (68)                                   | 70 | X   |           |                                                  | X                    |                                     |
| C11    | 20.0  | (68)                                   | 70 | X   |           |                                                  | X                    |                                     |
| C12    | 23.9  | (75)                                   | 70 | X   |           |                                                  | X                    | Refurbish test fixture '            |
| C13    | 23.9  | (75)                                   | 44 | X   |           |                                                  | X                    |                                     |
| C14    | 23.9  | (75)                                   | 44 | Х   |           |                                                  | Х                    |                                     |
| C15    | 23.9  | (75)                                   | 44 | X   |           |                                                  | X                    |                                     |
| C16    | 23.9  | (75)                                   | 44 | Х   |           |                                                  | X                    |                                     |
| C17    | 23.9  | (75)                                   | 44 | X   |           |                                                  | х                    |                                     |
| C18    | 23.9  | (75)                                   | 44 | X   |           |                                                  | Х                    | Refurbish test fixture              |
| C19    | 15.0  | (59)                                   | 54 | X   |           |                                                  | Х                    |                                     |
| C20    | 15.0  | (59)                                   | 54 | X   |           |                                                  | Х                    |                                     |
| C21    | 15.0  | (59)                                   | 54 | X   |           |                                                  | Х                    |                                     |
| C22    | 15.0  | (59)                                   | 54 | X   |           |                                                  | Х                    | <del></del>                         |
| C23    | 15.0  | (59)                                   | 54 | X   |           |                                                  | Х                    |                                     |
| C24    | 15.0  | (59)                                   | 54 | X   |           |                                                  | X                    | ·                                   |
| C25    | 15.0  | (59)                                   | 54 | X   |           |                                                  | X                    |                                     |
| С2ь    | 15.0  | (59)                                   | 54 | X   |           |                                                  | х                    |                                     |
| C27    | 16.7  | (62)                                   | 54 | х   |           |                                                  | Х                    |                                     |
| C28    | 16.7  | (62)                                   | 54 | X   |           |                                                  | Х                    |                                     |
| C29    | 16.7  | (62)                                   | 54 | X   |           |                                                  | x                    |                                     |
| C30    | 16.7  | (62)                                   | 54 | Х   | · · · · · |                                                  | X                    | Refurbish test fixture              |
| C31    | 16.7  | (62)                                   | 54 | X   |           |                                                  | X                    |                                     |
| C32    | 16.7  |                                        | 54 | Х   |           |                                                  | Х                    |                                     |
| C33    | 16.7  | (62)                                   | 54 | X   |           |                                                  | X                    |                                     |
| C34    | 16.7  | (62)                                   | 54 | Х   |           |                                                  | Х                    |                                     |
| C35    | 16.7  | (62)                                   | 54 | Х   |           |                                                  | Х                    |                                     |
| C36    | 16.7  | (62)                                   | 54 | Х   |           |                                                  | Х                    |                                     |
| C37    | 16.7  | (62)                                   | 54 | Х   |           |                                                  | Х                    |                                     |
| C38    | 16.7  | (62)                                   | 54 | Х   |           |                                                  | Х                    |                                     |
| C39    | 16.7  | (62)                                   | 54 | Х   |           |                                                  | Х                    |                                     |
| C40    | 16.7  | (62)                                   | 54 | Х   |           |                                                  | X                    |                                     |

Table 5. Phase 4, test results for rejected detonator container

| Test   | Number<br>of | Pres | sure  | Тевр | rature  |                                     |
|--------|--------------|------|-------|------|---------|-------------------------------------|
| number | detonators   | kPa  | (psi) | •c   | (°F)    | Remarks                             |
| 1      | 200          | 2668 | (387) | 156  | (312.8) | Reaction self contained             |
| 2      | 200          | 2441 | (354) | 149  | (300.2) | Leak at flange                      |
| 3      | 200          | 2468 | (358) | 144  | (291.2) | Pressure vessel held                |
| 4      | 300          | 2889 | (419) | 173  | (343.4) | Pressure vessel held                |
| 5      | 400          | 3130 | (454) | 177  | (350.6) | Slight pressure vent through flange |
| 6      | 500          | 3413 | (495) | 196  | (384.8) | Violent venting around flange area  |

Table 6. Indexing dial and nesting test results

| Reserve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test | Tempe | rature | Humidity | 3   | nsfer<br>ssure | Metering<br>Valve |                                                  | nor |    | nator                                            |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|--------|----------|-----|----------------|-------------------|--------------------------------------------------|-----|----|--------------------------------------------------|------------------------|
| Section   Sect | I I  |       |        | •        |     |                | d .               |                                                  |     |    |                                                  | Remarks                |
| Section   Sect | FI   | 22.2  | (72)   | 56       | 689 | (100)          | 2.0               |                                                  | v   | v  |                                                  | Tyfr rate 1= 25 ft/con |
| E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| E5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 22.2  |        | 55       | 689 | (100)          | 3.0               |                                                  | X   | Х  |                                                  | Txfr rate is 30 ft/sec |
| Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| Proceedings   Proceedings   Proceedings   Proceedings   Proceedings   Proceedings   Proceedings   Proceedings   Procedure   Proceedings   Procedure   Procedure  |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |        |          |     |                |                   | ļ                                                |     |    |                                                  |                        |
| C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |        |          |     |                |                   |                                                  |     |    | <del>                                     </del> |                        |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C4         22.8         (73)         55         689         (100)         1.5         X         X         X           C5         22.8         (73)         55         689         (100)         1.5         X         X         X           C6         23.3         (74)         52         689         (100)         1.5         X         X         X           C8         23.3         (74)         52         689         (100)         1.5         X         X         X           C9         23.3         (74)         52         689         (100)         1.5         X         X         X           C10         23.3         (74)         52         689         (100)         1.5         X         X         X           C11         23.3         (74)         52         689         (100)         1.5         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |        |          | L   |                |                   |                                                  |     |    |                                                  | tic tube               |
| C5         22.8   (73)   55   689   (100)   1.5   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| 66         23.3         (74)         52         689         (100)         1.5         X         X         X           C7         23.3         (74)         52         689         (100)         1.5         X         X         X           C8         23.3         (74)         52         689         (100)         1.5         X         X         X           C10         23.3         (74)         52         689         (100)         1.5         X         X           C11         23.3         (74)         52         689         (100)         1.5         X         X           C12         23.3         (74)         52         689         (100)         1.5         X         X           C12         23.3         (74)         52         689         (100)         1.5         X         X           C14         23.3         (74)         52         689         (100)         1.5         X         X           C15         23.3         (74)         51         689         (100)         1.5         X         X           C15         23.3         (74)         51         689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 22.8  |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C7         23.3         (74)         52         689         (100)         1.5         X         X           C8         23.3         (74)         52         689         (100)         1.5         X         X           C9         23.3         (74)         52         689         (100)         1.5         X         X           C10         23.3         (74)         52         689         (100)         1.5         X         X           C11         23.3         (74)         52         689         (100)         1.5         X         X           C12         23.3         (74)         52         689         (100)         1.5         X         X           C13         23.3         (74)         52         689         (100)         1.5         X         X           C14         23.3         (74)         52         689         (100)         1.5         X         X           C15         23.3         (74)         51         689         (100)         1.5         X         X           C16         23.3         (74)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |        |          |     |                |                   |                                                  |     |    |                                                  | <del></del>            |
| C8         23.3         (74)         52         689         (100)         1.5         X         X           C9         23.3         (74)         52         689         (100)         1.5         X         X           C10         23.3         (74)         52         689         (100)         1.5         X         X           C11         23.3         (74)         52         689         (100)         1.5         X         X           C12         23.3         (74)         52         689         (100)         1.5         X         X           C14         23.3         (74)         52         689         (100)         1.5         X         X           C15         23.3         (74)         52         689         (100)         1.5         X         X           C15         23.3         (74)         51         689         (100)         1.5         X         X           C16         23.3         (74)         50         689         (100)         1.5         X         X           C17         23.3         (74)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C8   | 23.3  | (74)   | 52       |     | (100)          | 1.5               |                                                  | X   | Х  |                                                  |                        |
| C11         23.3         (74)         52         689         (100)         1.5         X         X           C12         23.3         (74)         52         689         (100)         1.5         X         X           C13         23.3         (74)         52         689         (100)         1.5         X         X           C15         23.3         (74)         52         689         (100)         1.5         X         X           C16         23.3         (74)         51         689         (100)         1.5         X         X           C16         23.3         (74)         51         689         (100)         1.5         X         X           C18         23.3         (74)         50         689         (100)         1.5         X         X           C19         23.3         (74)         50         689         (100)         1.5         X         X           C20         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (75)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C12         23.3         (74)         52         689         (100)         1.5         X         X           C13         23.3         (74)         52         689         (100)         1.5         X         X           C14         23.3         (74)         52         689         (100)         1.5         X         X           C15         23.3         (74)         51         689         (100)         1.5         X         X           C17         23.3         (74)         51         689         (100)         1.5         X         X           C17         23.3         (74)         50         689         (100)         1.5         X         X           C18         23.3         (74)         50         689         (100)         1.5         X         X           C19         23.3         (74)         50         689         (100)         1.5         X         X           C20         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (75)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C13         23.3         (74)         52         689         (100)         1.5         X         X           C14         23.3         (74)         52         689         (100)         1.5         X         X           C15         23.3         (74)         52         689         (100)         1.5         X         X           C16         23.3         (74)         51         689         (100)         1.5         X         X           C17         23.3         (74)         50         689         (100)         1.5         X         X           C18         23.3         (74)         50         689         (100)         1.5         X         X           C19         23.3         (74)         50         689         (100)         1.5         X         X           C20         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (75)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   | <b> </b>                                         |     |    |                                                  |                        |
| C14         23.3         (74)         52         689         (100)         1.5         X         X           C15         23.3         (74)         52         689         (100)         1.5         X         X           C16         23.3         (74)         51         689         (100)         1.5         X         X           C17         23.3         (74)         50         689         (100)         1.5         X         X           C19         23.3         (74)         50         689         (100)         1.5         X         X           C20         23.3         (74)         50         689         (100)         1.5         X         X           C20         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (75)         50         689         (100)         1.5         X         X           C22         23.9         (75)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  | <del></del>            |
| C15         23.3         (74)         52         689         (100)         1.5         X         X           C16         23.3         (74)         51         689         (100)         1.5         X         X           C17         23.3         (74)         51         689         (100)         1.5         X         X           C18         23.3         (74)         50         689         (100)         1.5         X         X           C20         23.3         (74)         50         689         (100)         1.5         X         X           C20         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (75)         50         689         (100)         1.5         X         X           C22         23.9         (75)         50         689         (100)         1.5         X         X           C23         23.9         (75)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   | <del>                                     </del> |     |    | <del>  </del>                                    |                        |
| C17         23.3         (74)         51         689         (100)         1.5         X         X           C18         23.3         (74)         50         689         (100)         1.5         X         X           C19         23.3         (74)         50         689         (100)         1.5         X         X           C20         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (75)         50         689         (100)         1.5         X         X           C22         23.9         (75)         50         689         (100)         1.5         X         X           C24         23.9         (75)         50         689         (100)         1.5         X         X           C25         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C18         23,3         (74)         50         689 (100)         1.5         X         X           C19         23,3         (74)         50         689 (100)         1.5         X         X           C20         23,3         (74)         50         689 (100)         1.5         X         X           C21         23,3         (74)         50         689 (100)         1.5         X         X           C21         23,9         (75)         50         689 (100)         1.5         X         X           C23         23,9         (75)         50         689 (100)         1.5         X         X           C24         23,9         (75)         50         689 (100)         1.5         X         X           C24         23,9         (75)         50         689 (100)         1.5         X         X           C25         23,9         (75)         50         689 (100)         1.5         X         X           C26         23,9         (75)         50         689 (100)         1.5         X         X           C27         23,9         (75)         50         689 (100)         1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C16  |       | (74)   |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C19         23.3         (74)         50         689         (100)         1.5         X         X           C20         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (74)         50         689         (100)         1.5         X         X           C22         23.9         (75)         50         689         (100)         1.5         X         X           C23         23.9         (75)         50         689         (100)         1.5         X         X           C24         23.9         (75)         50         689         (100)         1.5         X         X           C25         23.9         (75)         50         689         (100)         1.5         X         X           C26         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X         X           C28         24.4         (76)         49         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C20         23.3         (74)         50         689         (100)         1.5         X         X           C21         23.3         (74)         50         689         (100)         1.5         X         X           C22         23.9         (75)         50         689         (100)         1.5         X         X           C23         23.9         (75)         50         689         (100)         1.5         X         X           C24         23.9         (75)         50         689         (100)         1.5         X         X           C25         23.9         (75)         50         689         (100)         1.5         X         X           C26         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    | L                                                |                        |
| C21         23.3         (74)         50         689         (100)         1.5         X         X           C22         23.9         (75)         50         689         (100)         1.5         X         X           C24         23.9         (75)         50         689         (100)         1.5         X         X           C25         23.9         (75)         50         689         (100)         1.5         X         X           C25         23.9         (75)         50         689         (100)         1.5         X         X           C25         23.9         (75)         50         689         (100)         1.5         X         X           C26         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X         X           C28         23.9         (75)         50         689         (100)         1.5         X         X           C30         24.4         (76)         49         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C22         23.9         (75)         50         689         (100)         1.5         X         X           C23         23.9         (75)         50         689         (100)         1.5         X         X           C25         23.9         (75)         50         689         (100)         1.5         X         X           C26         23.9         (75)         50         689         (100)         1.5         X         X           C26         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X         X           C28         23.9         (75)         50         689         (100)         1.5         X         X           C29         24.4         (76)         49         689         (100)         1.5         X         X           C30         24.4         (76)         50         689         (100)         1.5         X         X           C31         24.4         (76)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C23         23.9         (75)         50         689         (100)         1.5         X         X           C24         23.9         (75)         50         689         (100)         1.5         X         X           C25         23.9         (75)         50         689         (100)         1.5         X         X           C26         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X         X           C28         23.9         (75)         50         689         (100)         1.5         X         X           C28         23.9         (75)         50         689         (100)         1.5         X         X           C28         23.9         (75)         50         689         (100)         1.5         X         X         X           C30         24.4         (76)         49         689         (100)         1.5         X         X         X           C31         24.4         (76)         50         689         (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |        |          |     |                |                   |                                                  |     |    |                                                  | <del></del>            |
| C25         23.9         (75)         50         689         (100)         1.5         X         X           C26         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X         X           C28         23.9         (75)         50         689         (100)         1.5         X         X           C29         24.4         (76)         49         689         (100)         1.5         X         X           C30         24.4         (76)         49         689         (100)         1.5         X         X           C31         24.4         (76)         50         689         (100)         1.5         X         X           C32         24.4         (76)         50         689         (100)         1.5         X         X           C32         24.4         (76)         50         689         (100)         1.5         X         X           C33         24.4         (76)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        | 50       | 689 | (100)          |                   |                                                  |     |    |                                                  |                        |
| C26         23.9         (75)         50         689         (100)         1.5         X         X           C27         23.9         (75)         50         689         (100)         1.5         X         X           C28         23.9         (75)         50         689         (100)         1.5         X         X           C29         24.4         (76)         49         689         (100)         1.5         X         X           C30         24.4         (76)         49         689         (100)         1.5         X         X           C31         24.4         (76)         50         689         (100)         1.5         X         X           C32         24.4         (76)         50         689         (100)         1.5         X         X           C32         24.4         (76)         50         689         (100)         1.5         X         X           C33         24.4         (76)         50         689         (100)         1.5         X         X           C35         24.4         (76)         50         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C27         23.9         (75)         50         689         (100)         1.5         X         X           C28         23.9         (75)         50         689         (100)         1.5         X         X           C29         24.4         (76)         49         689         (100)         1.5         X         X           C30         24.4         (76)         50         689         (100)         1.5         X         X           C31         24.4         (76)         50         689         (100)         1.5         X         X           C32         24.4         (76)         50         689         (100)         1.5         X         X           C33         24.4         (76)         50         689         (100)         1.5         X         X           C34         24.4         (76)         50         689         (100)         1.5         X         X           C35         24.4         (76)         50         689         (100)         1.5         X         X           C36         24.4         (76)         53         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C28         23.9         (75)         50         689         (100)         1.5         X         X           C29         24.4         (76)         49         689         (100)         1.5         X         X           C30         24.4         (76)         49         689         (100)         1.5         X         X           C31         24.4         (76)         50         689         (100)         1.5         X         X           C32         24.4         (76)         50         689         (100)         1.5         X         X           C33         24.4         (76)         50         689         (100)         1.5         X         X           C34         24.4         (76)         50         689         (100)         1.5         X         X           C35         24.4         (76)         50         689         (100)         1.5         X         X           C36         24.4         (76)         50         689         (100)         1.5         X         X           C37         24.4         (76)         53         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C29         24.4         (76)         49         689         (100)         1.5         X         X           C30         24.4         (76)         49         689         (100)         1.5         X         X           C31         24.4         (76)         50         689         (100)         1.5         X         X           C32         24.4         (76)         50         689         (100)         1.5         X         X           C33         24.4         (76)         50         689         (100)         1.5         X         X           C34         24.4         (76)         50         689         (100)         1.5         X         X           C35         24.4         (76)         50         689         (100)         1.5         X         X           C36         24.4         (76)         50         689         (100)         1.5         X         X           C37         24.4         (76)         53         689         (100)         1.5         X         X           C38         24.4         (76)         53         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C30         24.4         (76)         49         689         (100)         1.5         X         X           C31         24.4         (76)         50         689         (100)         1.5         X         X           C32         24.4         (76)         50         689         (100)         1.5         X         X           C33         24.4         (76)         50         689         (100)         1.5         X         X           C34         24.4         (76)         50         689         (100)         1.5         X         X           C35         24.4         (76)         50         689         (100)         1.5         X         X           C36         24.4         (76)         50         689         (100)         1.5         X         X           C37         24.4         (76)         53         689         (100)         1.5         X         X           C39         24.4         (76)         53         689         (100)         1.5         X         X           C39         24.4         (76)         53         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C32       24.4       (76)       50       689       (100)       1.5       X       X         C33       24.4       (76)       50       689       (100)       1.5       X       X         C34       24.4       (76)       50       689       (100)       1.5       X       X         C35       24.4       (76)       50       689       (100)       1.5       X       X         C36       24.4       (76)       53       689       (100)       1.5       X       X         C37       24.4       (76)       53       689       (100)       1.5       X       X         C38       24.4       (76)       53       689       (100)       1.5       X       X         C39       24.4       (76)       53       689       (100)       1.5       X       X         C40       24.4       (76)       53       689       (100)       1.5       X       X         C41       24.4       (76)       53       689       (100)       1.5       X       X         C42       24.4       (76)       53       689       (100)       1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 24.4  | (76)   |          | 689 |                |                   |                                                  |     |    |                                                  |                        |
| C33         24.4         (76)         50         689         (100)         1.5         X         X           C34         24.4         (76)         50         689         (100)         1.5         X         X           C35         24.4         (76)         50         689         (100)         1.5         X         X           C36         24.4         (76)         53         689         (100)         1.5         X         X           C37         24.4         (76)         53         689         (100)         1.5         X         X           C38         24.4         (76)         53         689         (100)         1.5         X         X           C39         24.4         (76)         53         689         (100)         1.5         X         X           C40         24.4         (76)         53         689         (100)         1.5         X         X           C41         24.4         (76)         53         689         (100)         1.5         X         X           C42         24.4         (76)         53         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     | X  |                                                  |                        |
| C34         24.4         (76)         50         689         (100)         1.5         X         X           C35         24.4         (76)         50         689         (100)         1.5         X         X           C36         24.4         (76)         50         689         (100)         1.5         X         X           C37         24.4         (76)         53         689         (100)         1.5         X         X           C38         24.4         (76)         53         689         (100)         1.5         X         X           C39         24.4         (76)         53         689         (100)         1.5         X         X           C40         24.4         (76)         53         689         (100)         1.5         X         X           C41         24.4         (76)         53         689         (100)         1.5         X         X           C41         24.4         (76)         53         689         (100)         1.5         X         X           C42         24.4         (76)         53         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  | :                      |
| C35         24.4         (76)         50         689         (100)         1.5         X         X           C36         24.4         (76)         50         689         (100)         1.5         X         X           C37         24.4         (76)         53         689         (100)         1.5         X         X           C38         24.4         (76)         53         689         (100)         1.5         X         X           C39         24.4         (76)         53         689         (100)         1.5         X         X           C40         24.4         (76)         53         689         (100)         1.5         X         X           C41         24.4         (76)         53         689         (100)         1.5         X         X           C41         24.4         (76)         53         689         (100)         1.5         X         X           C42         24.4         (76)         53         689         (100)         1.5         X         X           C43         24.4         (76)         53         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C36       24.4       (76)       50       689       (100)       1.5       X       X         C37       24.4       (76)       53       689       (100)       1.5       X       X         C38       24.4       (76)       53       689       (100)       1.5       X       X         C39       24.4       (76)       53       689       (100)       1.5       X       X         C40       24.4       (76)       53       689       (100)       1.5       X       X         C41       24.4       (76)       53       689       (100)       1.5       X       X         C42       24.4       (76)       53       689       (100)       1.5       X       X         C43       24.4       (76)       53       689       (100)       1.5       X       X         C44       24.4       (76)       53       689       (100)       1.5       X       X         C45       24.4       (76)       53       689       (100)       1.5       X       X         C46       24.4       (76)       53       689       (100)       1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C37         24.4         (76)         53         689         (100)         1.5         X         X           C38         24.4         (76)         53         689         (100)         1.5         X         X           C39         24.4         (76)         53         689         (100)         1.5         X         X           C40         24.4         (76)         53         689         (100)         1.5         X         X           C41         24.4         (76)         53         689         (100)         1.5         X         X           C42         24.4         (76)         53         689         (100)         1.5         X         X           C43         24.4         (76)         53         689         (100)         1.5         X         X           C44         24.4         (76)         53         689         (100)         1.5         X         X           C44         24.4         (76)         53         689         (100)         1.5         X         X           C45         24.4         (76)         53         689         (100)         1.5         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C39       24.4       (76)       53       689       (100)       1,5       X       X         C40       24.4       (76)       53       689       (100)       1,5       X       X         C41       24.4       (76)       53       689       (100)       1,5       X       X         C42       24.4       (76)       53       689       (100)       1,5       X       X         C43       24.4       (76)       53       689       (100)       1,5       X       X         C44       24.4       (76)       53       689       (100)       1,5       X       X         C45       24.4       (76)       53       689       (100)       1,5       X       X         C46       24.4       (76)       53       689       (100)       1,5       X       X         C47       24.4       (76)       53       689       (100)       1,5       X       X         C48       24.4       (76)       53       689       (100)       1,5       X       X         C49       24.4       (76)       53       689       (100)       1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C37  |       | (76)   | 53       | 689 | (100)          |                   |                                                  |     |    |                                                  |                        |
| C40     24.4     (76)     53     689     (100)     1.5     X     X       C41     24.4     (76)     53     689     (100)     1.5     X     X       C42     24.4     (76)     53     689     (100)     1.5     X     X       C43     24.4     (76)     53     689     (100)     1.5     X     X       C44     24.4     (76)     53     689     (100)     1.5     X     X       C45     24.4     (76)     53     689     (100)     1.5     X     X       C46     24.4     (76)     53     689     (100)     1.5     X     X       C47     24.4     (76)     53     689     (100)     1.5     X     X       C48     24.4     (76)     53     689     (100)     1.5     X     X       C49     24.4     (76)     53     689     (100)     1.5     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C41     24.4     (76)     53     689     (100)     1.5     X     X       C42     24.4     (76)     53     689     (100)     1.5     X     X       C43     24.4     (76)     53     689     (100)     1.5     X     X       C44     24.4     (76)     53     689     (100)     1.5     X     X       C45     24.4     (76)     53     689     (100)     1.5     X     X       C46     24.4     (76)     53     689     (100)     1.5     X     X       C47     24.4     (76)     53     689     (100)     1.5     X     X       C48     24.4     (76)     53     689     (100)     1.5     X     X       C49     24.4     (76)     53     689     (100)     1.5     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C42     24.4     (76)     53     689     (100)     1,5     X     X       C43     24.4     (76)     53     689     (100)     1,5     X     X       C44     24.4     (76)     53     689     (100)     1,5     X     X       C45     24.4     (76)     53     689     (100)     1,5     X     X       C46     24.4     (76)     53     689     (100)     1,5     X     X       C47     24.4     (76)     53     689     (100)     1,5     X     X       C48     24.4     (76)     53     689     (100)     1,5     X     X       C49     24.4     (76)     53     689     (100)     1,5     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |        |          |     |                |                   |                                                  |     |    | <del></del>                                      |                        |
| C43     24.4     (76)     53     689     (100)     1,5     X     X       C44     24.4     (76)     53     689     (100)     1,5     X     X       C45     24.4     (76)     53     689     (100)     1,5     X     X       C46     24.4     (76)     53     689     (100)     1,5     X     X       C47     24.4     (76)     53     689     (100)     1,5     X     X       C48     24.4     (76)     53     689     (100)     1,5     X     X       C49     24.4     (76)     53     689     (100)     1,5     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |       |        |          |     |                |                   | $\dashv$                                         |     |    |                                                  |                        |
| C44     24.4     (76)     53     689     (100)     1,5     X     X       C45     24.4     (76)     53     689     (100)     1,5     X     X       C46     24.4     (76)     53     689     (100)     1,5     X     X       C47     24.4     (76)     53     689     (100)     1,5     X     X       C48     24.4     (76)     53     689     (100)     1,5     X     X       C49     24.4     (76)     53     689     (100)     1,5     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C46     24.4     (76)     53     689     (100)     1.5     X     X       C47     24.4     (76)     53     689     (100)     1.5     X     X       C48     24.4     (76)     53     689     (100)     1.5     X     X       C49     24.4     (76)     53     689     (100)     1.5     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |        | 53       |     |                | 1,5               |                                                  | Х   | X. |                                                  |                        |
| C47     24.4     (76)     53     689     (100)     1,5     X     X       C48     24.4     (76)     53     689     (100)     1,5     X     X       C49     24.4     (76)     53     689     (100)     1,5     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
| C48     24.4     (76)     53     689     (100)     1.5     X     X       C49     24.4     (76)     53     689     (100)     1.5     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |        |          |     |                |                   |                                                  |     |    |                                                  | <u> </u>               |
| C49 24.4 (76) 53 689 (100) 1.5 X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |        |          |     |                |                   | <del> </del> -                                   |     |    |                                                  |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |        |          |     |                |                   |                                                  |     |    |                                                  |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C50  | 24.4  | (76)   | 53       | 689 | (100)          | 1.5               |                                                  | X   | X  |                                                  |                        |

Table 7. Shipping tray integrity test results

| Test   | Tempe | rature | Humidity   |     | nsfer | Metering<br>valve | Don | or |     | nator |                                                        |
|--------|-------|--------|------------|-----|-------|-------------------|-----|----|-----|-------|--------------------------------------------------------|
| number | °C    | (°F)   | z          | kPa | (psi) | setting           | Yes | No | Yes | No    | Remarks                                                |
| El     | 23.9  | (75)   | 50         | 689 | (100) | N/A               | х   |    | Х   |       | Detonation                                             |
| E2     | 23.9  | (75)   | 50         | 689 | (100) | N/A               | Х   |    | X   |       | Detonation                                             |
| E3     | 23.9  | (75)   | 50         | 345 | (50)  | N/A               | Х   |    | Х   |       |                                                        |
| E4     | 23.9  | (75)   | 50         | 345 | ( 50) | N/A               |     | Х  |     | х     | Detonator was side-<br>ways in pallet                  |
| E5     | 23.9  | (75)   | 50         | 345 | (50)  | N/A               |     | Х  | X   |       |                                                        |
| E6     | 26.1  | (79)   | 62         | 345 | (50)  | N/A               |     | Х  | X   |       |                                                        |
| E7     | 26.1  | (79)   | 62         | 345 | ( 50) | N/A               |     | Х  |     | х     | Detonator sideways in pallet                           |
| E8     | 26.1  | (79)   | 62         | 689 | (100) | N/A               |     | X  |     | Х     | Detonator not seated correctly                         |
| E9     | 26.7  | (80)   | 63         | 689 | (100) | N/A               |     | Х  | Х   |       |                                                        |
| EIO    | 26.7  | (80)   | 63         | 689 | (100) | N/A               |     | Х  |     | Х     | Missed hole in pallet                                  |
| Ell    | 16.1  | (61)   | 50         | 689 | (100) | N/A               | Х   |    | Х   |       |                                                        |
| E12    | 16.1  | (61)   | 50         | 621 | (90)  | N/A               | X   |    | Х   |       |                                                        |
| E13    | 16.1  | (61)   | 50         | 552 | (80)  | N/A               | X   |    | Х   |       |                                                        |
| E14    | 16.1  | (61)   | 50         | 483 | (70)  | N/A               | Х   |    | Х   |       |                                                        |
| E15    | 16.1  | (61)   | 50         | 414 | (60)  | N/A               | Х   |    | Х   |       |                                                        |
| E16    | 16.1  | (61)   | 50         | 345 | ( 50) | 5.0               | Х   |    | х   |       | Installed metering valve                               |
| E17    | 16.1  | (61)   | 50         | 345 | (50)  | 4.0               | X   |    | х   |       |                                                        |
| E18    | 16.1  | (61)   | 50         | 552 | (80)  | 3.0               |     | Х  | X   |       |                                                        |
| E19    | 16.1  | (61)   | 50         | 345 | (50)  | 3.0               |     | X  | X   |       |                                                        |
| E20    | 16.1  | (61)   | 50         | 345 | (50)  | 3.0               |     | Х  | X   |       |                                                        |
| E21    | 16.1  | (61)   | 50         | 483 | (70)  | 3.0               |     | X  | X   |       |                                                        |
| E22    | 16.1  | (61)   | 50         | 552 | (80)  | 3.0               |     | Х  | Х   |       |                                                        |
| E23    | 24.4  | (76)   | 65         | 621 | (90)  | 3.0               |     | Х  | Х   |       |                                                        |
| E24    | 24.4  | (76)   | 65         | 655 | (95)  | 3.0               |     | Х  | X   |       | <del></del>                                            |
| E25    | 24.4  | (76)   | 65         | 676 | ( 98) | 3.0               |     | х  | Х   |       | Donor had a dent in<br>it from bouncing out<br>of tray |
| E26    | 24.4  | (76)   | 65         | 689 | (100) | 3.0               | x   |    | Х   |       |                                                        |
| E27    | 24.4  | (76)   | Ú <b>5</b> | 689 | (100) | 2.0               |     | Х  | Х   |       |                                                        |
| E28    | 24.4  | (76)   | 65         | 689 | (100) | 2.0               |     | Х  | Х   |       |                                                        |
| E29    | 24.4  | (76)   | 65         | 689 | (100) | 2.0               |     | Х  | Х   |       |                                                        |
| E30    | 24.4  | (76)   | 65         | 689 | (100) | 2.0               |     | Х  | Х   |       |                                                        |
| E31    | 22.2  | (72)   | 65         | 689 | (100) | 2.0               |     | Х  | X   |       |                                                        |
| E32    | 22.2  | (72)   | 65         | 689 | (100) | 2.0               |     | Х  | X   |       |                                                        |
| E33    | 22.2  | (72)   | 65         | 689 | (100) | 2.0               |     | Х  | Х   |       |                                                        |
| E34    | 22.2  | (72)   | 65         | 689 | (100) | 2.0               |     | X  | Х   |       |                                                        |
| E35    | 22.2  | (72)   | 65         |     | (100) | 2.0               |     | X  | Х   |       |                                                        |
| E36    | 22.2  | (72)   | 65         |     | (100) | 2.0               |     | X  | X   |       |                                                        |
| Cl     | 26.7  | (80)   | 40         |     | (100) | 2.0               |     | X  | X   |       |                                                        |
| C2     | 26.7  | (80)   | 40         |     | (100) | 2.0               |     | X  | X   |       |                                                        |
| C3     | 26.7  | (80)   | 40         |     | (100) | 2.0               |     | Х  | X   |       |                                                        |
| C4     | 26.7  | (80)   |            |     | (100) | 2.0               |     | X  | X   |       |                                                        |
| C5     | 26.7  | (80)   | 40         |     | (100) | 2.0               |     | Х  | X   |       |                                                        |
| C6     | 26.7  | (80)   | 40         |     | (100) | 2.0               |     | Х  | х   |       |                                                        |
| C7     | 26.7  | (80)   | 40         |     | (100) | 2,0               |     | Х  | х   |       |                                                        |
| C8     | 26.7  | (80)   | 40         |     | (100) | 2.0               |     | X  | X   |       |                                                        |

the company of the co

Table 7. Shipping tray integrity test results (cont)

| T              | Temperature |              | Humidity   |            | nsfer          | Metering valve | Don            | or<br>tion          |                     | nator      |                                        |
|----------------|-------------|--------------|------------|------------|----------------|----------------|----------------|---------------------|---------------------|------------|----------------------------------------|
| Test<br>number | °C          | (°F)         | Humidity % | kPa        | ssure<br>(psi) | setting        | Yes            | No                  | Yes                 | gned<br>No | Remarks                                |
| number         | <u> </u>    | (1)          |            | Kia        | (621)          | Secting        | 163            |                     | 163                 |            | Neural KS                              |
| С9             | 26.7        | (80)         | . 40       | 689        | (100)          | 2.0            |                | Х                   | Х                   |            |                                        |
| C10            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | X                   | Х                   |            |                                        |
| Cll            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C12            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | X                   | Х                   |            |                                        |
| C13            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | Х                   | Х                   |            |                                        |
| C14            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | Х                   | X                   |            |                                        |
| C15            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            | L              | Х                   | Х                   |            | ······································ |
| C16            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | X                   | Х                   |            |                                        |
| C17            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | Х                   | X                   |            |                                        |
| C18            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | X                   | X                   |            | ·                                      |
| C19            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | X                   | Х                   |            |                                        |
| C20            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            |                | Х                   | Х                   | ·          |                                        |
| C21            | 26.7        | (80)         | 40         | 689        | (100)          | 2.0            | <b>  </b>      | X                   | X                   |            |                                        |
| C22            | 26.7        | (80)         | 36         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C23            | 26.7        | (80)         | 36         | 689        | (100)          | 2.0            |                | Х                   | );                  |            |                                        |
| C24            | 26.7        | (80)         | 36         | 689        | (100)          | 2.0            |                | X                   | Х                   |            |                                        |
| C25            | 26.7        | (80)         | 36         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C26            | 26.7        | (80)         | 36         | 689        | (100)          | 2.0            |                | Х                   | X                   |            |                                        |
| C27            | 26.7        | (80)         | 36         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C28            | 26.7        | (80)         | 36         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C29            | 26.7        | (80)         | 36         | 689        | (100)          |                | <b> </b>       | X                   | - X                 |            |                                        |
| C30            | 26.7        | (80)         | 36         | 689        | (100)          | 2.0            | ļI             |                     |                     |            |                                        |
| C32            | 26.7        | (80)         | 36 .       | 689<br>689 | (100)          | 2.0            | <del></del>    | х .<br>х            | X                   |            | <del></del>                            |
| C33            | 27.8        | (82)         | 35         | 689        | (100)          | 2.0            |                | X X                 | X                   |            |                                        |
| C34            | 27.8        | (82)<br>(82) | 35<br>35   | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C35            | 27.8        | (82)         | 35         | 689        | (100)          | 2.0            |                | $\frac{\lambda}{X}$ | X                   |            |                                        |
| C37            | 27.8        | (82)         | 35         | 689        | (100)          | 2.0            |                | Ŷ                   | $\hat{\mathbf{x}}$  |            |                                        |
| C38            | 27.8        | (82)         | 35         | 689        | (100)          | 2.0            | <del>  </del>  | Ŷ                   | $\frac{\hat{x}}{x}$ |            |                                        |
| C39            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            | <del> </del> - | $\hat{\mathbf{x}}$  | $\frac{\hat{x}}{x}$ |            |                                        |
| C40            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | $\frac{\hat{x}}{x}$ | X                   |            |                                        |
| C41            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | X                   | $\frac{x}{x}$       |            |                                        |
| C42            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | X                   | $\frac{x}{x}$       |            | ···-                                   |
| C43            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C44            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            | <del> </del>   | $\frac{x}{x}$       | X                   |            | -                                      |
| C45            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C46            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | Х                   | X                   |            |                                        |
| C47            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C48            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C49            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | X                   | X                   |            |                                        |
| C50            | 18.3        | (65)         | 68         | 689        | (100)          | 2.0            |                | X                   | Х                   |            |                                        |

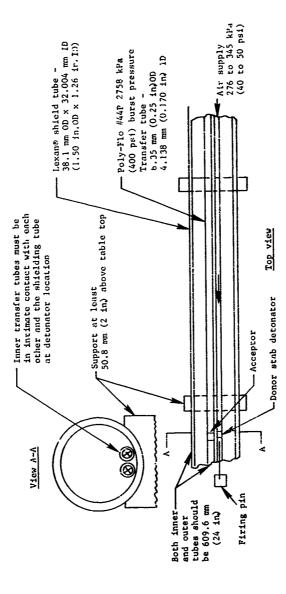



Figure 1. Test setup for input/output transfer tube tests

- it (Whiteliff) (SWD) SO 1900 to the person of the control of the

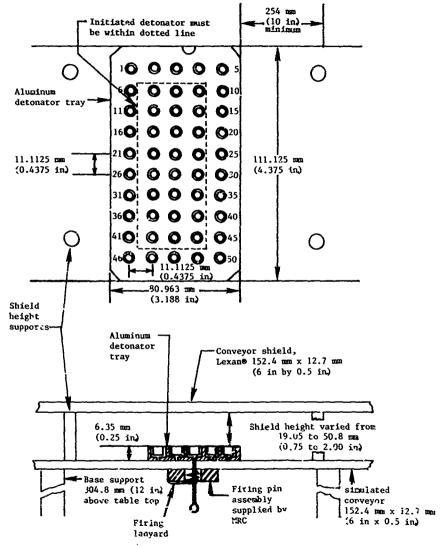
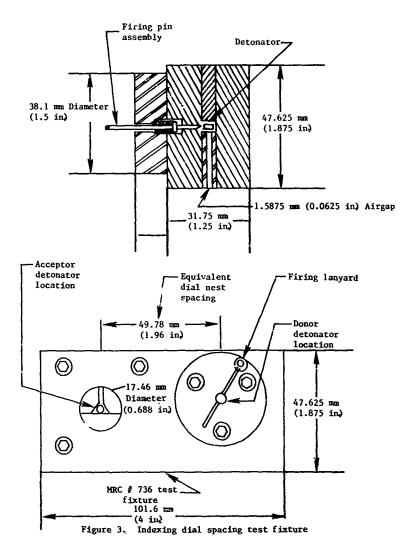




Figure 2. Intra-tray propagation test setup (typical)



entering the second of the sec

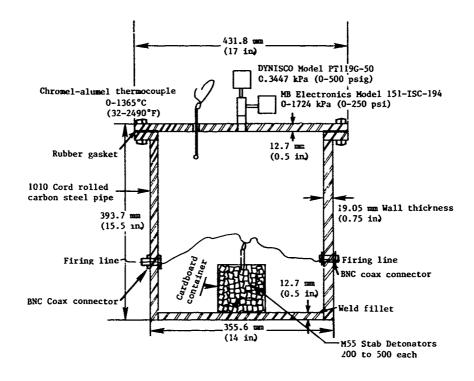
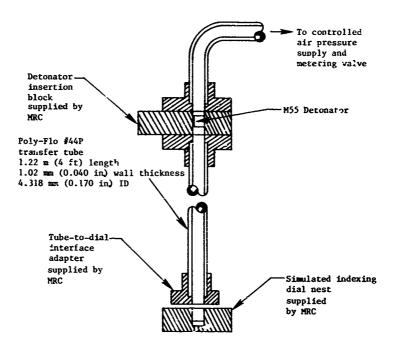
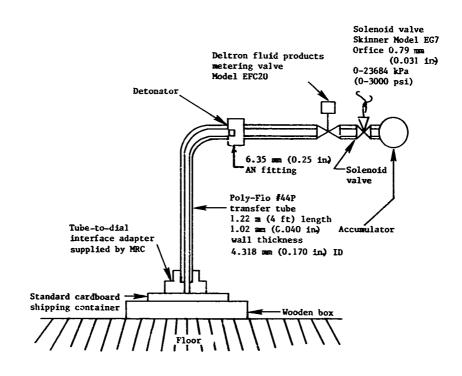





Figure 4. Rejected detonator container



ક્ષાઇક્ષ્મ થક્ષ્મ મામાના મા

Figure 5. Indexing dial nest integrity test setup



eskensestiltenstenstensalteskenseskenstenstynes avgriftervessa postallysesons Lovelydysisklikkensplessestydt

Figure 6. Shipping tray integrity test setup

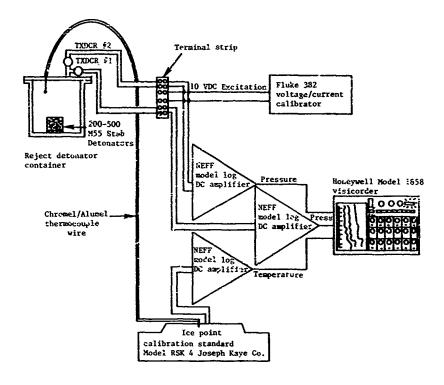



Figure 7. Instrumentation test setup for pressure and temperature measurements

Hisia 102.611 in the entitle for the following the second section of the section of the second section of the second section of the second section of the section of the

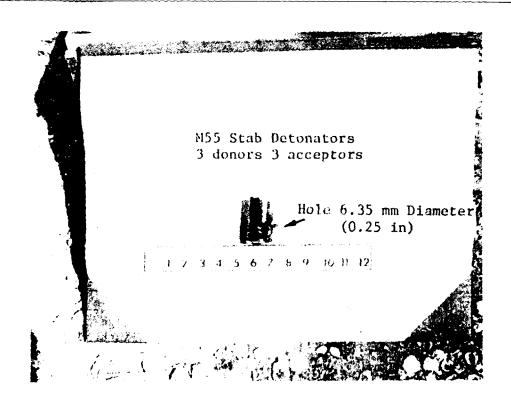



Figure 8. Damage to Lexan® outer shield with 3 donor and 3 acceptor detonators functioning - Input/output transfer test

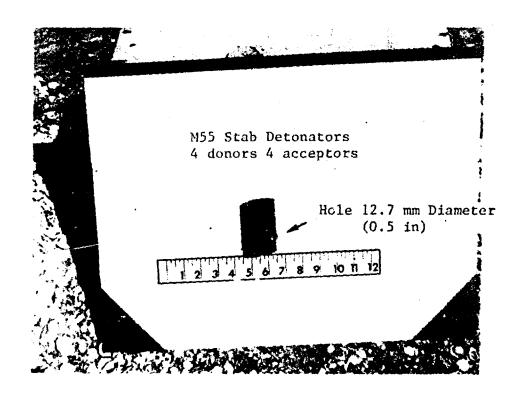



Figure 9. Damage to Lexan® outer shield with 4 donor and 4 acceptor detonators functioning - Input/output transfer test

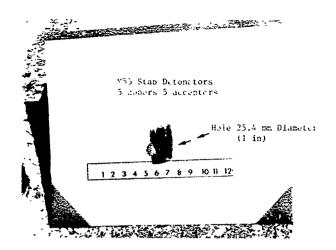



Figure 10. Damage to Lexans outer shield with 5 donor and 5 acceptor detonators simultaneously initiated - Input/output transfer test




Figure 11. Damage to test area when 50 stab detonators simultaneously initiated during intra-tray propagation tests

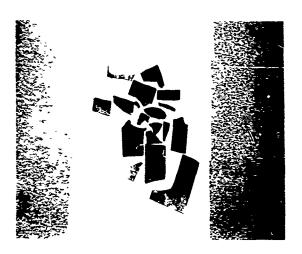



Figure 12. Shattered Lexan® shield when 50 stab detonators simultaneously initiated during the intra-tray propagation tests

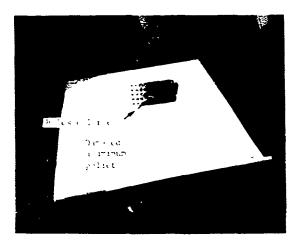



Figure 13. Damage to aluminum pallet when 50 stab detonators simultaneously initiated during the intra-tray propagation tests

# DISTRIBUTION LIST

```
Commander
U.S. Army Armament Research and
Development Command
ATTN: DRDAR-TSS (5)
DRDAR-LC
DRDAR-LCM
DRDAR-LCM-S (12)
DRDAR-LCU-P
DRDAR-LCU-P
DRDAR-SF
Dover, NJ 07801
```

#### Commander

U.S. Army Materiel Development and Readiness Command ATTN: DRCDE DRCIS-E DRCPA-F

DRCIS-E DRCPA-E DRCPP-I DRCDL DRCSG-S

5001 Eisenhower Avenue Alexandria, VA 22333

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Director U.S. Army Materiel Systems Analysis Activity ATTN: DRXSY-MP Aberdeen Proving Ground, MD 21005

Commander/Director
Chemical Systems Laboratory
U.S. Army Armament Research and
Development Command
ATTN: DRDAR-CLJ-L
DRDAR-CLB-PA
APG, Edgewood Area, MD 21010

Director
Ballistics Research Laboratory
U.S. Army Armament Research and
Development Command
ATTN: DRDAR-TSB-S
Aberdeen Proving Ground, MD 21005

Chief

Benet Weapons Laboratory, LCWSL U.S. Army Armament Research and Development Command ATTN: DRDAR-LCB-TL Watervilet, NY 12189

Commander

U.S. Army Armament Materiel and Readiness Command ATTN: DRSAR-LEP-L

DRSAR-IR (2) DRSAR-IRC DRSAR-ISE (2) DRSAR-IRC-E DRSAR-PDM DRSAR-LC (2)

DRSAR-ASF (2) DRSAR-SF (3)

Rock Island, IL 61299

Commander

USDRC Installations & Services Agency ATTN: DRCIS-RI-IU

ATTN: DRCIS-RI-IU
DRCIS-RI-IC
Rock Island, IL 61299

Chairman

Dept of Defense Explosives Safety Board (2) Hoffman Bldg 1, Room 856C 2461 Eisenhower Avenue Alexandria, VA 22331

Commander

U.S. Army Munitions Base Modernization Agency ATTN: SARPA-PBM-LA (3) SARPM-PBM-T-SF (2) SARPM-PBM-EP Dover, NJ 07801

Commander

U.S. Army Construction Engineering Research Laboratory ATTN: CERL-ER Champaign, IL 61820

Office, Chief of Engineers ATTN: DAEN-MZA-E Washington, DC 20314 U.S. Army Engineer District, Huntsville ATTN: Construction Division, HAD-ED (2) P.A. Box 1600 West Station Huntsville, AL 35807

Director U.S. Army Industrial Base Engineering Activity ATTN: DRXIB-MT (2) Rock Island, IL 61299

Director
DARCOM Field Safety Activity
ATTN: DRXOS (5)
Charlestown, IN 47111

Commander
Badger Army Ammunition Plant
ATTN: SARBA
Baraboo, WI 53913

Commander
Crane Army Ammunition Plant
ATTN: SARCN
Crane, IN 47522

Commander Hawthorne Army Ammunition Plant ATTN: SARHW-SF Hawthorne, NV 89415

Commander Holston Army Ammunition Plant ATTN: SARHO-E Kingsport, TN 37662

Commander
Indiana Army Ammunition Plant
ATTN: SARIN-OR (2)
SARIN-SF
Charlestown, IN 47111

Commander
Iowa Army Ammunition Plant
ATTN: SARIO-S
Middletown, IO 52638

Commander Kansas Army Ammunitionn Plant ATTN: SARKA-CE Parsons, KS 67537 Commander
Lone Star Army Ammunition Plant
ATTN: SARLS-IE
Texarkana, TX 57701

Commander Longhorn Army Ammunition Plant ATTN: SARLO-S Marshall, TX 75607

Commander McAlester Army Ammunition Plant ATTN: SARMC-SF McAlester, OK 74501

Commander
Milan Army Ammunition Plant
ATTN: SARMI-S
Milan, TN 38358

Commander
Radford Army Ammunition Plant
ATTN: SARRA-IE
Radford, VA 24141

Commander Sunflower Army Ammunition Plant ATTN: SARSU-S Lawrence, KS 66044

Commander Volunteer Army Ammunition Plant ATTN: SARVO-S Chattanooga, TN 37401

Commander
Pine Bluff Arsenal
ATTN: SARPB-SA
Pine Bluff, AR 71601

Commander
Eocky Mountain Arsenal
ATTN: SARRM-SAF
Denver, CO 80240